One World Trade Center: Rebuilding From the Ashes

There is no doubt that the attacks that occurred throughout the United States on September 11, 2001 (twelve years today) changed the course of history. The Twin Towers, located in New York City, collapsed two hours after the first plane hit the north tower. The death toll for these attacks totalled over 3000 (History Channel).

To pay tribute to the victims, plans were made to construct a memorial complex on the site of the old Trade Centers. This complex features five new skyscrappers, a 9/11 memorial and museum, a World Trade Center transportation hub, retail space, and a performing arts centre (World Trade Center). The extensive plans have involved some of the most famous architects, artists and urban developers of our time, including: Santiago Calatrava, David Cholds, Norman Foster, Frank Gehry, Daniel Libeskind, Fumihiko Maki and Richard Rogers (World Trade Center).

The memorial features two 16-acre reflecting pools which are set in the original footprints of the two towers. The largest man-made waterfalls in North America are located in the centre of these pools, and the names of the victims are written around the pool’s edges.

Photo of the World Trade Center Memorial Taken During My Recent Visit to New York

For Every Action, There is an Equal Larger and Opposite Reaction

In addition to the memorial, plans were made to build five new skyscrapers. One World Trade Center, sometimes incorrectly referred to as Freedom Tower (Wall Street Journal), will be the tallest building in the western hemisphere, and the fourth tallest building in the world upon completion. The roof top has a height of 1368 ft (417m), identical to the height of the original North Tower. However, the steel spire situated at the top of the building bring the total height to 1776 ft (541 m). This acts as a symbolic reference to the date that the United States signed the Declaration of Independence, separating the colony from the British Empire.

The structure is composed of a concrete core surrounded by a steel structure. As a result, the tower acts like a ‘building within a building’, attaining a level of safety which far surpasses the current requirements in building codes. Steve Plate, the director of World Trade Center construction for the Port Authority of New York and New Jersey, stated, “The core walls aren’t sheetrock like the original towers, they’re more than 6 feet of concrete in places. We’re rewriting the book on security for office towers.” In addition to this, the podium at the base of the building consist of a 187 ft tall by 200 ft wide concrete slab, increasing the towers safety. (Popular Mechanics).

Once completed, this building will play host to 69 office floors, two television broadcasting floors, two restaurants, an observation deck, and a glass-metal parapet (World Trade Center). The construction of the tower, which began in 2006, is expected to be completed in early 2014.

Current Progress of Freedom Tower Construction. Taken on my Recent Visit to New York City.
Current Progress of On World Trade Center Construction, Taken on my Recent Visit to New York City.

Green Reaches New Heights

One of the most important features of the new landmark is the achievement of a LEED Gold certification. This has been attained through the use of various green technologies. The 57th floor will play host to two 25,000 gallon (94,600 L) rainwater collection tanks, which will be used for the buildings operational needs. In addition, the toilets are shaped in a way to increase the velocity of the water flushing, reducing the amount of water per flush.  According to Steven Plate, It not just helps the environment. It also saves a lot of operational costs.” (MSNBC News)

Some other ‘green’ features include: the use of recycled debris and materials during construction, an increase in the use of natural light, and an LED backlight system for the podium which is both cost-effective and creates less heat energy,

However, the ‘green’ emphasis has lead to construction costs of almost $4 billion (US), making it the most expensive office tower ever built (Wall Street Journal). Despite this, the significantly lowered operating costs and energy usage make the project economical from a life cycle perspective. For more information about the LEED program, see my previous post entitled “LEED-ing the Way to a Better Future“.


Before the final steel beam was lifted into place for One World Trade Center, President Barrack Obama inscribed, “We remember. We Rebuild. We come back stronger.” (Telegraph) The symbolism behind this is quite strong, and personify’s the project as more than just a building; it represents the resiliency of the American people, and acts as a tribute to those that lost their lives in the horrific attacks.

It is important that people do not forget the past. History can teach us important lessons about the future, and can be one of the most important tools in making the world a better place. This tower stands as a testament, not only to those who lost their lives, but to the thousands of men and women who have worked on building from the ashes. The lessons learned from the collapsed towers are studied all across the globe, and have helped develop new techniques for creating stronger, more resilient structures. It is believed that this will create a new standard for high rise construction, ensuring that the events of September 11 will never again occur.

To see additional construction photos, visit the Structural Digest Gallery.

2013 New York City Bridge Conference

On August 26th and 27th, the world’s top bridge engineers and architects congregated to New York City for the 2013 New York City Bridge Conference. This conference was first hosted by the Bridge Engineering Association in 2003, but has quickly emerged as one of the leading bridge conferences in the world.

This year, the conference played host to a number of esteemed guests and industry leaders. The lead designer for Istanbul’s new Bosphorus Bridge presented the design and discussed the current specifications for long span suspension bridges. In addition, Thomas Lavigne, a partner in Lavigne Cheron Architects, presented his design for the new Jacques Chaban-Delmas lift bridge in Bordeaux, France. The projects are illustrated below.

The Third Bosphorus Bridge (left) and the Jacques Chaban-Delmas lift bridge (right). Photo Credit: Today’s Zaman and the American Society for Civil Engineering.

The conference also included many other speakers from around the world. The topics discussed include: Cable Supported Bridges; Bridge Rehabilitation; Seismic Analysis and Design; Bridge Monitoring; and Bridge History and Aesthetics.

Innovation in Bridge Rehabilitation

Corrosion of reinforcing, concrete degradation and concrete spalling are the three main concerns when dealing with concrete bridges. Traditional technologies employ a host of testing machines, causing the process to be quite inefficient; typically only 1000 sq. ft. of bridge deck can be inspected within one hour. Not only does this inefficiency increase the total cost of the project, but it creates traffic congestion and puts the worker’s lives at risk.

Researchers from Rutgers University have now developed a fully autonomous robotic non-destructive-evaluation platform. This product is an ‘all-in-one’ bridge inspection tool, and has the potential to drastically change the face of the industry.

The new product comes equipped with four resistivity probes, two surface imaging cameras, a laser scanner,and a GPS tracking system. This allows the robot to conduct all necessary testing, including: impact echo; ground penetrating radar; ultrasonic surface waves; and electrical resistivity testing. Furthermore, it is designed to move laterally and to turn at zero radius along a pre-set inspection path.

This product is able to inspect 4000 sq. ft. of bridge deck per hour (four times faster than traditional techniques). It also requires fewer workers on site, providing a higher level of project safety and efficiency. In addition, real-time data analysis is undertaken in a nearby van, allowing engineers to quickly address any concerns that arise.

Rapid Replacement of US 6 Keg Creek bridge

In an effort to reduce traffic congestion and fatalities during bridge construction, the US Congress approved the formation of the Strategic Highway Research Program (SHRP) in 2005 (Transportation Research Board). The SHRP has since developed an aptly named Accelerated Bridge Construction (ABC) process, which makes use of pre-fabricated modular construction.

The US 6 Keg Creek Bridge replacement in Iowa took place in 2011 and was a pilot project for the new system. This project would typically take six months to complete. However using ABC, the replacement took only two weeks. The fourteen day bridge assembly was made possible by the use of an on-site fabrication plant. However, this could not be done in densely populated areas. A time lapse of the bridge replacement is presented below.

The old bridge was demolished in just one day, using what Bala Sivakumar of HNTB Architects refers to as a “chop and drop” system. The cost of the replacement totalled $231 per sq. ft..

To connect the ‘lego’ pieces, joints were filled with ultra high performance concrete (UHPC). This created full moment connections, emulating a typical cast-in-place construction. The use of UHPC also allowed the six inches of overlapping reinforcing steel at joints to fully develop. However some problems did arise when applying the UHPC to the old concrete. This was resolved by installing post-tensioned rods which created compression within the joints.

Further Advancement

The new concepts and ideas discussed at the conference show how advanced the industry has become. However, there are still many aspects of bridge engineering that require improvement and optimization. As the industry grows, new research will continue to bring forth ideas that revolutionize construction practices. It is therefore imperative that conferences continue to occur, providing a platform for researchers to both share and inspire.

Modular Structures: A Lesson from LEGO

With the recent advent of modular construction, a number of new and interesting projects are popping up all around the world.

Gluck+, an architectural firm based out of New York City, has designed a medium-income, seven storey, 28 unit apartment building in Upper Manhattan. The buildings lot size posed a serious concern for builders, as it does not provide the area required for traditional construction projects. Therefore, the architects at Gluck+ chose to assemble the residence using 56 pre-fabricated modules, all of which are built in a factory in Berwick, Pennsylvania (Architectural Record).

Proposed Modular Building in Upper Manhattan. Photo Credit: Gluck+

Building the modules in a factory allowed for high levels of quality control, and provided a much more comfortable building environment for workers. In addition, the project could proceed notwithstanding weather conditions. This has lead to an estimated 15% savings in total project cost. The construction time has also been drastically reduced, and the project will take just under one year to complete (four modular units are installed per day, after the initial foundation has been constructed). The residence, which is expected to be completed in October, is also quite aesthetically pleasing. By pulling some stacks forward and pushing others back, several terraces and overhangs are created, giving the structure a distinct look. The assembly process for the modules is presented in the following video:

A number of other modular residential buildings have been popping up in New York. A 32 storey residential housing unit in the Atlantic Yards development site is under construction. When completed, the building will be a whopping 322 ft tall and will hold the title of tallest modular building in New York. Skanska, the company building this project, has estimated that the total cost of the modular building will be 20% less than a traditional building (Skanska News Report). Similar to Gluck+’s design, 60% of the construction will occur off site. The modules will be built in a controlled environment in Brooklyn’s Navy Yard, and will be transported to site. As a result, the building is expected to attain LEED Silver certification, and produce 70 to 90% less construction waste (than traditional construction).

Final Render of the Tallest Modular Residential Building in New York. Photo Credit: Skanska

However, there are often risks when implementing new technologies. The Plumbing Foundation of New York City is suing the Department of Buildings for ignoring a number of major building safety rules. Stewart O’Brien, the executive director of the Plumbing Foundation stated, “It’s a dangerous path we walk down when the city appears to be willing to circumvent the clear words of the law so that wealthy and influential developers can make a few extra dollars by using lower paid and untrained assembly line workers” (The Real Deal).

Despite the issues that builders face with this new technology, it is apparent that modular buildings are becoming very popular with engineers and designers. Projects like this, as well as Sky City in China, are indicators of the shift in construction practices within the industry.

It seems quite ironic that the construction industry, which has a history of using immensely creative and complex building techniques, is now reverting quite successfully to the intuitive building style of LEGO.